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Inhibitory effect and mechanism 
of Tagetes erecta L. fungicide on 
Fusarium oxysporum f. sp. niveum
Ruochen Du1, Jiandong Liu2, Panpan Sun1, Hongquan Li1 & Jinsheng Wang2

Botanical fungicides comprise attractive alternatives to chemical fungicides because of their 
environmental compatibility. Flavonoids extracted from Tagetes erecta L. have an inhibitory effect 
on fusarium wilt in watermelons caused by Fusarium oxysporum f. sp. niveum (FON). In this study, 
we synthesized one of these flavonoids, 2,5-dicyclopentylidene cyclopentanone (Tagetes erecta L. 
fungicide (TEF)) and assessed its activity against FON. In vitro, TEF inhibited FON growth and killed 
FON cells directly. TEF also affected FON cell physiology and mycelial structure. In watermelon 
plants with fusarium wilt, TEF protected the leaf cell structure and improved the germination rate of 
infected seeds while increasing overall plant resistance. A TEF-resistant mutant (FONM) was created 
by chemical mutagenesis. FON and FONM were analysed using iTRAQ and RNA-Seq, which identified 
422 differentially expressed proteins and 7817 differentially expressed mRNAs in the proteome and 
transcriptome, respectively. The FONM mutations caused changes in the cell membrane and cell wall, 
which may constitute the site of action of TEF. Together, these results demonstrate that TEF could 
effectively control the watermelon fusarium wilt caused by FON, possibly through the inhibition of 
sterol biosynthesis. The data presented here suggest that TEF represents a new potential botanical anti-
fungal drug.

Fusarium wilt of watermelon is caused by Fusarium oxysporum f. sp. niveum (FON). Worldwide, the loss of 
watermelons owing to FON infection has been increasing annually. As the process of breeding for FON-resistant 
cultivars can be challenging1, chemical pesticides such as carbendazim, myclobutanil, and diniconazole have 
traditionally been used to control FON infections2. However, these drugs have high potential risks3. Furthermore, 
with continued use of these pesticides, FON has evolved to become pesticide-resistant. Alternatively, botanical 
fungicides have long been considered desirable substitutes to chemical fungicides because of their lower threat 
to the environment and to human health4. Currently, the development of botanical fungicides is mainly focused 
on plant extracts such as alkaloids, flavonoids, and essential oils5,6. It has been shown that plant extracts possess 
antifungal activity7. To date, there have been no reports on the botanical fungicides to treat watermelon fusarium 
wilt caused by the FON pathogen.

Tagetes erecta L. is an annual ornamental plant. It has been shown that extracts of the marigold flower have 
antibacterial activity8. In addition, in our previous study we demonstrated that the extracts prepared from the 
marigold root had inhibitory effects on a variety of common plant pathogens9. An analysis of the different chem-
ical components found in the root extract revealed that the flavonoids exerted an obvious inhibitory effect on 
FON10. However, the extraction of these flavonoids directly from marigold roots for use on an agricultural scale 
was impractical. To overcome this limitation, we have developed and patented a method to chemically synthesize 
the active substance (referred to as TEF; Patent No: ZL200810055370.X, China). The aim of the present study is 
to assess TEF’s antifungal effect on FON, its protective effect against fusarium wilt and the mechanism of action 
involved.

Results
Confirmation of TEF by gas chromatography/mass spectrometry (GC/MS).  The maximum GC/
MS absorption peak occurred at 11–12 min (Fig. 1A). Based on the VG11-250 data retrieval system, it was con-
firmed that the synthesized material is 2,5-dicyclopentylidene cyclopentanone with a purity of 97.2%.
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Effect of TEF on FON.  TEF had an obvious inhibitory effect on FON growth (Fig. 2A). The inhibition rate 
reached 100% at a concentration of 1.0 mg/mL. The antifungal zone of inhibition (Fig. 2B) increased in size as the 
FON concentration increased. All FON were killed at 1.0 mg/mL of TEF. The EC50 value at 168 h was 0.2021 mg/
mL (95% confidence intervals: 0.1919–0.2123 mg/mL).

Mycelial growth in the control group (Fig. 2C,D) was evenly distributed, with a smooth surface, as shown by scan-
ning electron microscopy. Conversely, in the 0.6 mg/mL TEF treatment group (Fig. 2E,F), the mycelia were deformed 
and irregular in shape with swellings on the surface. Mycelia were less frequently observed and the expansion site was 
more severely deformed in the 0.8 mg/mL TEF treatment group than that in the 0.6 mg/mL group (Fig. 2G,H).

The FON membrane conductance increased with increasing concentration of TEF (Fig. 2I). The respiratory 
intensity in each treatment group increased initially and then decreased (Fig. 2J). As the TEF concentration 
increased, the overall level of respiratory intensity increased. Overall, cellulase (Fig. 2K) and β-D-glucosidase 
(Fig. 2L) activity decreased with increasing concentrations of TEF.

Effect of TEF on fusarium wilt.  Watermelon seed germination rates, assessed at 48, 72, and 96 h, were 
significantly reduced in the presence of FON spore suspension (SS) (P < 0.05), whereas this was reversed by TEF 
treatment in a dose-dependent manner with a considerable effect being observed even at the lowest TEF dose of 
0.2 mg/mL (Fig. 3A). The maximal effect was obtained in the 0.8 mg/mL TEF treatment group. Conversely, the 
effect of 0.8 mg/mL carbendazim (BCM) was significantly lower than that of 0.8 mg/mL TEF (P < 0.05).

TEF treatment significantly reduced the disease index in both the indoor and field settings to virtually the 
same extent (P < 0.05). BCM treatment also reduced the disease indices but appeared to have stronger effects 
indoors compared to that in the field environment. The TEF treatment was significantly more effective than BCM 
treatment in both locations (P < 0.05) (Fig. 3B,C).

The structure of leaves in the control group was normal and the internal organelles were clearly intact, as 
shown by transmission electron microscopy (Fig. 3D). The number of osmiophilic granules was found to be 
increased in the SS treatment group (Fig. 3E) and a clear disruption of organelle membrane architecture was 
observed. Thylakoid lamellae were reduced in number and unevenly distributed (Fig. 3G). In addition, the num-
ber of mitochondria was increased in the SS group and they were smaller than normal, adopting an oval, spherical 
shape (Fig. 3I). In the TEF treatment group, the number of osmiophilic granules was reduced as compared to that 
in the SS group (Fig. 3F). In addition, compared to the SS-treated group, the degree of chloroplast membrane 
damage was lower, with the grana-thylakoid lamellae arranged appropriately, and the number of chloroplasts was 
increased (Fig. 3H). The number of mitochondria was also increased in the TEF group with a larger mitochon-
drial volume compared to that observed in the SS treatment group (Fig. 3J).

Compared to the SS treatment group, TEF treatment markedly reduced the malondialdehyde (MDA) con-
tent at the seedling stage and the fruit blossoming stage (Fig. 4A,B). Conversely, upon TEF treatment, the pro-
line (Pro) content was always maintained at higher levels than those in the control at both stages (Fig. 4C,D). 
Superoxide dismutase (SOD) activity in the TEF treatment group was maintained at high levels and was always 
higher than that in the control group, whereas SOD activity in the SS treatment group was decreased to levels 
lower than those in the control group (Fig. 4E,F). Changes of peroxidase (POD) activity were similar to SOD 
except that SS treatment was high initially (Fig. 4G,H). The overall level of catalase (CAT) activity from high to 
low was TEF treatment group, SS treatment group and control group both in two stages (Fig. 4I,J). TEF treatment 
group had the hignest l-pheynlalanin ammonialyase (PAL) activity, followed by SS treatment group and control 
group at both stages (Fig. 4K,L).

Colony morphology of wild-type and mutant FON strains.  A FON mutant strain (FONM) that was 
resistant to TEF was obtained by mutagenesis. On solid potato dextrose agar (PDA) medium, FON grew slowly 
(Fig. 5A,B). In contrast, FONM grew rapidly on solid PDA medium (Fig. 5C,D), and the morphology, texture, 
and colour of the colony were obviously different from those of FON. After culturing of FONM on 0.8 mg/mL 

Figure 1.  GC/MS profile and chemical formula of TEF. (A) GC/MS profile of TEF, showing the maximum 
absorption peak at 11–12 min. (B) Chemical structure of TEF, 2,5-dicyclopentylidene cyclopentanone. The 
purity is 97.2%.
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TEF solid PDA medium (Fig. 5E,F), the characteristics of FONM changed: the growth rate decreased and the 
colony adopted a yellow colour; the radial texture of the colony was attenuated; and a ring texture appeared. In a 
plate confrontation test (Fig. 5G), FONM could suppress the growth of FON.

Proteomics and transcriptional analysis.  The proteomics sequencing results are shown in 
Supplementary Table S1. Of the 409,529 detected spectra, 86,157 were considered unique. There were 422 differ-
entially expressed proteins between groups. Among them, 218 were up-regulated and 204 were down-regulated 
(Fig. 6A). Under gene ontology (GO) analysis, the most enriched GO terms were ‘metabolic’, ‘cell’, and ‘catalytic 
activity’ (Supplementary Fig. S1). Under Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis, the most 
enriched pathway was ‘carbon metabolism’, followed by ‘biosynthesis of amino acids’ (Supplementary Fig. S1).

Figure 2.  Effect of TEF on FON in vitro. (A) Growth inhibition rates over 24–168 h. (B) Anti-fungal zone 
of inhibition at 168 h. (C–H) Scanning electron microscopy image of FON mycelium in the control group, 
1500× (C) or 6000× (D) magnification. FON mycelium in the 0.6 mg/mL TEF treatment group, 1500× (E) or 
6000× (F) magnification. FON mycelium in the 0.8 mg/mL TEF treatment group, 2000× (G) or 6000× (H) 
magnification. (I) Changes in membrane conductance of FON. (J) Changes in respiratory intensity of FON. (K) 
Changes in cellulase activity of FON. (L) Changes in β-D-glucosidase activity of FON. CG: control group with 
no TEF. Means followed by the same letter are not significantly different at the P < 0.05 level.

http://S1
http://S1
http://S1
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The dataset of RNA-Seq was deposited in the NCBI database under accession number SRA541923. The results 
of transcriptional sequencing and the de novo assembly are shown in Supplementary Table S2. A total of 15,831 
of the 20,889 unigenes were annotated (Fig. 6B). Among the 7817 differentially expressed genes, 4583 were 
up-regulated and 3234 were down-regulated (Fig. 6C). Under GO analysis, the most enriched GO terms were 
‘metabolic’, ‘cell’, and ‘catalytic activity’ (Supplementary Fig. S2). Under KEGG analysis, the most enriched path-
way was ‘biosynthesis of amino acids’, followed by ‘carbon metabolism’ (Supplementary Fig. S2).

The results of the association analysis revealed there is a significant relationship between protein and mRNA 
abundance (Fig. 6D). There were 103 and 67 dots in quadrants 3 and 7, respectively, where the changes in protein 
expression and gene expression levels were most consistent. The ten most differentially expressed dots in these 
two quadrants are shown in Supplementary Table S3, and the key differentially expressed dots based on functional 
annotation are shown in Table 1. The mRNA expression levels of these key dots were also analysed by quantitative 
reverse transcription-polymerase chain reaction (qRT-PCR; Fig. 6E). After 0.8 mg/mL TEF treatment, the RNA 
and protein levels of CYP51 in FON and FONM were significantly decreased (P < 0.05), but the content in FONM 
was always higher than that of FON (Fig. 7A,B). The pathway enrichment analysis of CYP51 revealed that differ-
ential expression was related to the sterol biosynthesis pathway (Fig. 7C).

Discussion
Most botanical fungicides are still in the theoretical or conceptual stage owing to several factors including diffi-
culty in extraction and process development11. Obtaining these botanical fungicides in high purity and yield by 
other methods has therefore constituted the main obstacle to their successful application. In the present study, we 
obtained a botanical fungicide, originally identified in the Tagetes root, with high yield and purity by chemical 
synthesis.

Figure 3.  Effect of TEF on fusarium wilt. (A) Seed germination rates at 48, 72, and 96 h. (B) Seedling disease 
index. (C) Prevention rates of drugs. (D) Leaf tissues of the control group. (E–J) Transmission electron 
microscopy images of osmiophilic granules from the SS (E) and the SS and TEF (F) treatment groups. 
Chloroplast from the SS (G) and the SS and TEF (H) treatment groups. Mitochondria from the SS (I) and the SS 
and TEF (J) treatment groups. CG: control group with no drugs or SS. SS: SS treatment group; SS & TEF: SS and 
different concentrations of TEF treatment groups; SS & BCM: SS and 0.8 mg/mL BCM treatment group; TEF: 
SS and 0.8 mg/mL TEF treatment group: BCM: SS and 0.8 mg/mL BCM treatment group. Means followed by the 
same letter are not significantly different at the P < 0.05 level.

http://S2
http://S2
http://S2
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To understand the effect of this new fungicide on FON, we initially conducted an extensive range of dose 
response studies to identify the optimal concentration of FON for use as a fungicide. The results showed that FON 
growth was completely inhibited when the TEF concentration reached 1.0 mg/mL and at this same concentration, 
all FON were killed in an antifungal zone of inhibition experiment. These results indicate that TEF played a dual 

Figure 4.  MDA and Pro content, SOD, POD, CAT, and PAL activities in leaves. MDA content at the (A) 
seedling and the (B) fruit blossoming stage. Pro content at the (C) seedling and the (D) fruit blossoming stage. 
SOD activity at the (E) seedling and the (F) fruit blossoming stage. POD activity at the (G) seedling and the (H) 
fruit blossoming stage. CAT activity at the (I) seedling and the (J) fruit blossoming stage. PAL activity at the (K) 
seedling and the (L) fruit blossoming stage. CG: control group; SS: SS treatment group; TEF: SS and 0.8 mg/mL 
TEF treatment group.
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role in inhibiting the growth of FON and directly killing FON, and that 1.0 mg/mL was the optimal TEF concen-
tration in vitro. In addition, the TEF-treated FON mycelium was found to be sparser than that of untreated FON. 
Swelling was also noted and this resulted in considerable deformity. As currently widely used triazole fungicides 
can affect the formation of the fungal cell wall, resulting in cell changes including irregular swelling and consider-
able thickening12, we concluded that TEF changes FON cell wall components. Furthermore, the measurement of 
electrical conductivity reflects the permeability and integrity of the membrane13. In the present study, increasing 
concentrations of TEF led to increases in membrane conductivity, suggesting that the mode of action of FON 
is at the membrane. This process would then lead to cell leakage and consequently suppression of FON growth. 
Notably, cell conductance did not change further over time, suggesting that the effect of TEF on FON was rapid 
and long-lasting.

We also observed that FON respiratory intensity increased with increasing concentrations of TEF, and that 
there was an initial increase in respiratory intensity followed by a decrease. From this, we inferred that the cause of 
this phenomenon was related to increased respiration in FON to produce more energy to resist the TEF-induced 
stress, but this adaptive mechanism gradually waned under the continuous influence of TEF. This is consistent 
with a report by Fugro et al.14 demonstrating that BCM can affect fungal energy metabolism and ultimately 
inhibit their growth. Furthermore, the activities of cellulase and β-D-glucosidase are related to the infection 
ability of FON15. The data from our study demonstrate that both cellulase and β-D-glucosidase activity decreased 
with time in the TEF treatment group in a dose-dependent manner. These findings indicate that TEF could poten-
tially inactivate FON infection ability by repressing cellulase and β-D-glucosidase activities.

Watermelon fusarium wilt is a soil-borne disease caused by FON that can occur over the entire watermelon 
development period16. To understand the actual preventive effects against watermelon fusarium wilt, our research 
focused on the key indices during germination, seedling formation, and the fruit blossoming stage. The germina-
tion rate in the 0.8 mg/mL TEF treatment group was significantly higher than that in the other groups including 
the BCM treatment group. The optimal TEF concentration to protect the germination process was found to be 
0.8 mg/mL. This concentration was lower than the optimal TEF concentration from the in vitro studies described 
above, possibly reflecting toxic effects on the plant itself, as has been observed for other drugs. In addition, TEF 
treatment significantly reduced the disease index in seedlings grown either indoors or under field conditions, 
with a prevention rate significantly higher than that of BCM. Notably, compared to the indoor environment, the 
prevention rate of TEF in the field was virtually unaltered. However, the effect of BCM was obviously decreased 
in the field compared to that indoors. This discrepancy may be due to a complex microbial population as well as 
other conditions. We inferred from this that TEF might have a wider range of antifungal activity or better adapt-
ability than BCM.

A previous analysis by Wang et al.17 on the effects of fusaric acid on cucumber leaves indicated that the leaf 
cell membrane was damaged and the respiratory function of mitochondria was affected. Conversely, according 
to our data, TEF-treated plants exhibited minimal changes in leaf cell structure; furthermore, the structures of 
chloroplasts and mitochondria were relatively unchanged and appeared to be largely intact compared to that in 
fusarium wilt-infected plants. To further understand the specific changes in watermelon leaves, we examined 
various biochemical indices at both the seedling and the fruit blossoming stage. Plant MDA and Pro levels, and 

Figure 5.  Colony morphology of FON and FONM. Positive (A) and negative (B) side of FON on PDA solid 
medium. Positive (C) and negative (D) side of FONM on PDA solid medium. Positive (E) and negative side 
of FONM on 0.8 mg/mL TEF on PDA solid medium. (G) Plate confrontation test between FON (right) and 
FONM (left) on PDA solid medium.
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SOD, POD, CAT, and PAL activities are important indicators of a plant’s resistance18,19. Chang et al.20 studied 
the biological effect of arbuscular mycorrhizal fungi (AMF) on fusarium wilt in cucumbers and found that the 

Figure 6.  Results of proteomics and transcriptional analyses. (A) Number of differentially expressed proteins 
between groups. (B) Venn diagram of Unigene annotations. (C) Number of differentially expressed genes. (D) 
Nine quadrant chart of mRNA expression ratios and protein expression ratios [Red dots, significant changes 
in both protein and mRNA; blue dots, significant changes in protein only; green dots, significant changes in 
mRNA only]. (E) mRNA expression levels of key differentially expressed dots. The numbers are successively 
related to the key dots displayed in Table 1. Means followed by the same letter are not significantly different at 
the P < 0.05 level.
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content of Pro after AMF treatment was significantly higher than normal. Bill et al.21 used thyme oil obtained 
from avocado to treat the fungal infection anthracnose, and the results showed that the activities of SOD, POD, 
CAT, and PAL all increased after treatment. Similarly, in the present study, the above mentioned indicators in the 
TEF treatment group remained at a beneficial level when compared to the SS treatment group. These findings 
indicate that TEF is able to sustain the beneficial effect of these biochemical indices and thereby increase the stress 
resistance of the watermelon.

The development of a drug-resistant mutant strain is crucial in studies of the mechanism of drug action. In 
particular, Hu et al.22 used a mutant strain to explore the mechanism of resistance to isoprothiolane (IPT) by the 
rice blast fungus Magnaporthe oryzae, and discovered that the MGG_09793 protein was significantly and specifi-
cally induced by IPT in sensitive strains. We isolated a TEF-resistant strain in order to conduct an in-depth study 
of the TEF antifungal mechanism. Several previous studies have shown that fungal resistance was mainly caused 
by genetic mutations. For example, benzimidazole resistance is often caused by point mutations in the β-tubulin 
gene, which result in amino acid sequence changes in the benzimidazole binding site23. The present study showed 
that although the characteristics of FON and FONM were obviously different there was no significant difference 
(except the growth rate) in FONM before and after TEF treatment. Therefore, we deduced that the resistance of 
FONM was likely to be caused by gene mutation.

To further narrow the scope of the study, we identified differentially expressed genes that showed consistent 
changes at both the RNA and protein levels by correlation analysis. Compared to FON, significantly up-regulated 
proteins in FONM mostly comprised enzymes with catalytic activity. In addition, several cell membrane proteins 
were also identified. At the mRNA level, the changes focused on membrane composition and function, with the 
largest change being in a membrane multidrug resistance protein, the mRNA abundance of which in FON was 
very low (approximately 1/115 of FONM) as determined by qRT-PCR. Homologs of this protein are located at 
the endothelial and epithelial cell surfaces and are involved in multidrug transport, with the function of expelling 
drugs to the outside of cells. These multidrug resistance proteins are also involved in cytochrome P450 metabo-
lism13. Based on this finding, we further screened for proteins related to the cell wall and cell membrane function. 
The results identified seven relevant proteins, the protein and mRNA expression of which were both up-regulated. 
These results indicate that FONM sustains obvious differences in the composition and function of the cell wall 
and cell membrane when compared with FON. Combined with the effect of TEF on the mycelium surface, we 
concluded that the cell wall and cell membrane may constitute the site of action of TEF.

In particular, one of the seven proteins we identified is eburicol 14-alpha-demethylase (CYP51), which is 
necessary for cytochrome P450 synthesis. Other studies have shown that azole drugs affect the synthesis of ergos-
terol precursors by inhibiting the expression of CYP51, thereby impacting the structure of the fungal membrane. 
The ergosterol metabolic pathway has been previously described in details24. In the present study, the mRNA 
and protein expression levels of CYP51 were significantly up-regulated in FONM, and the expression of genes 
in related pathways was also altered. Furthermore, the mRNA and protein levels of CYP51 in FON and FONM 
were decreased after 0.8 mg/mL TEF treatment, although the content in FONM was always higher than that of 
FON. Thus, TEF may exert its antifungal effect by inhibiting the expression of CYP51, which in turn affects cell 
membrane function and leads to cells death. While FONM has a relatively high level of CYP51, rendering 0.8 mg/
mL TEF not sufficient to kill the cells. This phenomenon is similar to the actions of other drugs, suggesting that 
TEF has the potential to act as a substitute for these drugs. However, although CYP51 is affected by TEF, there is 
no direct evidence to confirm that CYP51 is the direct target of TEF; instead, TEF may act directly on other sites 

No. Protein Acc.
FC 
(protein)

FC 
(RNA) Description Organism Species Function

1 KPA37403.1 1.25 5.42 Membrane primary amine oxidase Fusarium langsethiae Membrane; oxidoreductase activity, acting on 
the CH-NH2 group of donors

2 KPA45232.1 0.80 1.17 Cell wall protein Fusarium langsethiae Cell wall; intrinsic component of cell wall

3 KPA39795.1 1.66 5.25 Membrane primary amine oxidase Fusarium langsethiae Membrane; oxidoreductase activity, acting on 
the CH-NH2 group of donors

4 CCT67575.1 1.49 4.15 Probable DUF895 domain 
membrane Fusarium fujikuroi Membrane; intrinsic component of membrane

5 EXA53151.1 0.33 1.29 Eburicol 14-alpha-demethylase Fusarium oxysporum Membrane; synthesize precursors of ergosterol

6 XP_964698.1 0.47 1.51 Anchored cell wall protein 4 Neurospora crassa Cell wall; intrinsic component of cell wall

7 KIL86238.1 0.35 7.02 Multidrug resistance protein Fusarium avenaceum
Membrane; intrinsic component of 
membrane;active transmembrane transporter 
activity

8 KPA44397.1 −0.60 −2.38 Beta-glucosidase b Fusarium langsethiae Carbohydrate metabolism; cellulose metabolic 
process

9 EXA36265.1 −0.46 −2.24 Beta-glucosidase Fusarium oxysporum Carbohydrate metabolism; cellulose metabolic 
process

10 KPA46791.1 −0.34 −1.57 Cytochrome C oxidase Assembly 
protein subunit 17 Fusarium langsethiae Energy metabolism; intracellular part; 

respiratory chain complex IV assembly

11 YP_001249308.1 −0.45 −6.96 Cytochrome C oxidase subunit 2 Fusarium graminearum Energy metabolism; intracellular part; 
generation of precursor metabolites and energy

12 EMT63775.1 −0.46 −1.41 Cytochrome C oxidase subunit 7A Fusarium oxysporum Energy metabolism; mitochondrial part; 
generation of precursor metabolites and energy

Table 1.  Key dots.
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of this pathway. In future studies, we plan to further explore changes in the levels of genes and proteins in this 
pathway in FONM compared to FON as well as following TEF treatment.

Notably, levels of two enzymes that could act on the carbon-carbon bond of ketonic substances were signif-
icantly reduced in FONM compared with FON. This led to the hypothesis that TEF is normally metabolized 

Figure 7.  mRNA expression level, protein expression level and enrichment pathway map of CYP51. (A) 
mRNA expression level of CYP51 under 0.8 mg/mL TEF treatment. (B) Protein expression level of CYP51 
under 0.8 mg/mL TEF treatment.CG: control group with no drugs. Means followed by the same letter are not 
significantly different at the P < 0.05 level. (C) Enrichment pathway map of CYP51. Map was downloaded from 
the KEGG server with our data mapping to the pathway (http://www.kegg.jp/kegg). Significant changes in 
expression are color-coded: red, up-regulated; green, down-regulated42. CYP51 is marked with red arrows.

http://www.kegg.jp/kegg
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by these two enzymes to produce one or more toxic metabolites. FONM resistance may therefore result from 
a reduction in the level of these two enzymes. Validation of this pro-drug hypothesis will require in vitro drug 
metabolism and in vivo pharmacokinetic studies. Additionally, the levels of two glucosidase-related enzymes were 
also reduced, suggesting that the pathogenicity of FONM is weakened as a result of TEF resistance. A similar phe-
nomenon has been reported in Fusarium oxysporum, wherein the pathogenicity decreased when its heat resist-
ance increased25. Finally, we identified decreased expression of three proteins related to cytochrome C, which are 
involved the process of energy metabolism. However, this result was contrary to the higher growth rate of FONM 
and the underlying reason has yet to be elucidated.

Conclusion
We have synthesized the botanical fungicide TEF and also generated a TEF-resistant mutant (FONM). In vitro, 
the antifungal effect of TEF both inhibited the growth of and directly killed FON. In vivo, TEF inhibited fusarium 
wilt in watermelons grown in the field and improved overall watermelon plant resistance. Results from pro-
teomic and expression analyses coupled with electron microscopy imaging indicate that the cell membrane and 
cell wall may constitute the sites of TEF action. The mechanism of action may be related to sterol biosynthesis. 
Together, the findings of this study suggest that TEF may therefore represent a new botanical anti-fungicidal agent 
and provide the foundation for its potential development and commercial application against fusarium wilt in 
watermelon.

Materials and Methods
Materials.  FON was obtained from the laboratory of plant pathology, Shanxi Agricultural University, China. 
TEF was synthesized by the College of Life Science, Shanxi Agricultural University, China. PDA medium was 
prepared according to a method described by Klepser et al.26.

FON SS was prepared as follows: FON was inoculated onto a PDA solid slant medium and then cultured for 
168 h at 25 °C. FON spores were washed off with sterile water and further diluted with sterile water to yield a spore 
concentration of 106/mL.

GC/MS.  GC/MS was used to analyse the chemically synthesized TEF using a Dexsil column (300GC 
30 m × 0.25 mm × 0.25 μm, Bafang Century Technology Ltd., Beijing, China) run under the following condi-
tions: column temperature profile, 50–250 °C at 3 °C/min; carrier gas, He; injection temperature, 250 °C; flow rate, 
0.8 mL/min; injection mode, split 30:1; transfer line temperature, 290 °C; scanning range, 45–380 m/Z. Data were 
acquired using an online VG11-250 data system (VG Life Sciences Inc., South Pasadena, CA, USA).

Inhibition rate and the antifungal zone of inhibition.  FON SS (1 mL) was added to PDA solid medium 
and cultured for 168 h at 25 °C. FON were collected using a 60-mm punch and then inoculated onto PDA solid 
media that contained 0, 0.2, 0.4, 0.6, 0.8, or 1.0 mg/mL TEF, then incubated at 25 °C. Colony diameters were meas-
ured at 24, 48, 72, 96, 120, 144, and 168 h. The inhibition rate was calculated as (% inhibition) = (control diameter 
− treatment diameter) × 100/(control diameter − 60), where 60 refers to the diameter of the punch. Finally, EC50 
values were calculated using GraphPad Prism 5.0 (GraphPad Software Inc., San Diego, CA, USA)27.

Different concentrations of TEF (0, 2, 4, 6, 8, or 10 mg/mL in a volume of 1 mL) were added to the centre of 
PDA solid medium (10 mL) containing a lawn of FON. Anti-fungal zone of inhibition circles were measured after 
culturing at 25 °C for 168 h.

Morphological observation of mycelia.  Slices of FON (10 mm × 10 mm × 2 mm) were obtained from 
FON colonies grown for 168 h. The slices were fixed using osmic acid steam (FUSHENG Biotech Co. Ltd., 
Shanghai, China), and observed under a JSM-7200F scanning electron microscope (JEOL Ltd., Akishima, Japan).

FON biochemical indices.  SS (1 mL) and different concentrations of TEF (0.2 and 0.4 mg/mL) were added 
to 100 mL of PDA liquid medium and cultured at 25 °C at 120 rpm. Samples of the culture (10 mL) were collected 
at 24, 48, 72, 96, 120, 144, and 168 h, and then centrifuged at 3000 g for 15 min. The membrane conductance and 
respiration intensity (i.e., the amount of CO2 produced) of each sample were measured according to the descrip-
tions of Kohno et al.28 and Li et al.29.

Sodium carboxyl methyl cellulose CMC-Na (2 mL, Sigma-Aldrich Co. Ltd., Beijing, China) or salicin (2 mL, 
Sigma-Aldrich Co. Ltd.) was added to 0.5 mL of samples collected as above and incubated at a constant temper-
ature of 50 °C for 30 min. The solution was inactivated by heating at 100 °C for 5 min and then cooled to room 
temperature. Dinitrosalicylic acid (DNS; 3 mL; Sigma-Aldrich Co. Ltd.), was added and the solution absorbance 
at 540 nm was measured after dilution of the sample by three fold.

Germination rates of seed, disease index, and prevention rate.  Watermelon seeds (Changle 
Seeds Co. Ltd., Shandong, China) were sterilized by 75% alcohol and then transferred to Petri dishes. SS 
(5 mL) was added followed by addition of 5 mL of sterile water, different concentrations of TEF (0.2, 0.4, 0.6, 
0.8, or 1.0 mg/mL), or 0.8 mg/mL BCM (Yangnong Chemical Group Co., Ltd, Jiangsu, China). The seeds were 
then cultured in the absence of light at 30 °C. The number of germinating seeds was determined at 48, 72, and 
96 h. Sterile water was used rather than SS as a control group. Germination rate (%) = (germinated number/
total number) × 100%.

Seedlings with four true leaves were cultivated both indoor and in the field. The roots were irrigated using 
SS with addition of 5 mL sterile water, 0.8 mg/mL TEF, or 0.8 mg/mL BCM. The same irrigation treatment was 
conducted after 10 and 20 d. The treatment with sterile water was used as the control group. The disease index was 
assessed at 30 d and the prevention rate calculated according to previously published methods30,31.
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Observation of leaf ultrastructure.  Seedlings with four true leaves were treated with sterile water, SS 
alone, or both SS and TEF (0.8 mg/mL), and then cultivated in the field. The same irrigation treatment was con-
ducted after 24 and 48 h. After 72 h, the leaves were sliced and fixed using an osmic acid steam (FUSHENG 
Biotech Co. Ltd., Shanghai, China) and then observed using a JEM-100CXII transmission electron microscope 
(JEOL Ltd., Akishima, Japan).

Leaf biochemical indices.  Sterilized watermelon seeds were cultivated in a field until one of the following 
stages was attained: ‘seedlings with four true leaves’ or ‘fruiting’. SS (5 mL) was added and additional 5 mL sterile 
water or 0.8 mg/mL TEF was then added. Leaf tissues were collected at 24, 48, 72, 96, 120, 144, and 168 h. MDA 
and Pro content were measured by the thiobarbituric acid (TBA) colorimetric method32 and the ninhydrin color-
ation method33. SOD, POD, CAT, and PAL activity was determined according to the description of Freire et al.34; 
Duan et al.35; Yao et al.36, and Dong et al.37, respectively.

Mutagenesis of FON.  A diethyl sulphate (DES) solution (0.1 mL, DES:absolute ethanol, 1:4) and 8 mL 
of PBS pH 7.0 were added to 2 mL of SS. The mixture was incubated at 30 °C, at 120 rpm for 10, 20, 30, 40, 
50, or 60 min, after which sodium thiosulfate (0.25 mL) was added. A sample (0.1 mL) of the reactant solu-
tion was inoculated onto PDA solid medium containing 0.2, 0.4, 0.6, or 0.8 mg/mL TEF. The plates were 
cultured at 25 °C until a single colony was established. The single colony was restreaked onto a PDA plate 
containing 0.8 mg/mL TEF. This process was repeated until a colony could grow in the presence of 0.8 mg/
mL TEF.

iTRAQ, RNA-Seq, and correlation analysis.  SS from FON or FONM (1 mL) was added to 250 mL 
of PDA liquid medium and cultured at 25 °C at 120 rpm for 72 h. Total protein was extracted using the 
Total Protein Extraction Kit (Roche Ltd. Basel, Switzerland) according to the manufacturers’ protocols. 
Proteins were digested using Trypsin Gold (Promega Co., Madison, WI, USA) for 16 h at 37 °C, after 
which the samples were vacuum dried. The resulting peptide mixture was labelled with iTRAQ according 
to the manufacturer’s protocol (iTRAQ 8-plex Labeling Kit, Applied Bio, Foster City, CA, USA). The SCX 
fractionation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were per-
formed by Gene Denovo (Gene Denovo Bio Co. Ltd., Guangzhou, China). The primary LC-MS/MS data 
were converted to the MGF format using Proteome Discovery software (Thermo Scientific™, Pittsburgh, 
PA, USA). Protein identifications were performed using the Mascot search engine (Matrix Science, 
London, UK). Proteins having a significantly (P < 0.05) different fold change (either >1.2 or <0.83) were 
considered to be differentially expressed38. The differentially expressed proteins were analysed using GO 
and KEGG databases and the enrichment pathways were examined using a hypergeometric test with 
P < 0.05.

The samples for iTRAQ were also used for RNA-Seq. A Quick RNA Isolation Kit (Qiagen Co. Ltd., 
Suzhou, China) was used to extract total RNA. Poly(A) + mRNA was isolated using Oligo (dT) affinity 
chromatography. Subsequently, the mRNA was fragmented into pieces by adding a fragmentation buffer. 
First-strand cDNA was produced by random hexamer-primed reverse transcription, and the second-strand 
was generated by RNaseH and DNA polymerase I. cDNA products were purified using a QiaQuick PCR 
Extraction Kit (Qiagen Co. Ltd.) and dissolved in EB buffer. After end repair, the cDNA products were 
modified at the tail with poly(A) and Illumina paired-end sequencing adaptors. Following agarose gel 
electrophoresis, the cDNA fragments were extracted from gels and then enriched by PCR to construct 
the cDNA library. Finally, the cDNA libraries were sequenced using an Illumina HiSeq. 4000 from Gene 
Denovo. Sequence data were analysed and de novo assembly was performed using the Trinity Program. 
All unigenes were compared with 4 databases: Nr, COG, KEGG, and Swiss-Prot by BLASTX with cutoff 
E-value of 10−5. Significant differences in gene expression were evaluated using a threshold value of abso-
lute log2-fold change >1 with a FDR <0.05 and P < 0.0539,40. The Pearson’s correlation coefficient between 
protein and mRNA data was calculated, and scatter plots for FON and FONM expression ratios were 
created.

qRT-PCR and ELISA.  SS from FON or FONM (1 mL) was added to 250 mL of PDA liquid medium with or 
without 0.8 mg/mL TEF, respectively, and then cultured at 25 °C at 120 rpm for 72 h. Total RNA extraction was 
performed using the Quick RNA Isolation Kit, and cDNA synthesis was performed using the Transcriptor First 
Strand cDNA Synthesis Kit (Roche Bio, Shanghai, China). Primers for qRT-PCR are listed in Supplementary 
Table S4 and were designed using Primer Premier 5.0 (Premier Bio, Palo Alto, CA, USA). qRT-PCR was per-
formed using Mx3000PTM (Stratagene, Santa Clara, CA, USA) with SuperReal PreMix Plus (Tiangen Bio Co. 
Ltd., Beijing, China) following the manufacturer’s protocol. The relative gene expression level was calculated 
using the ΔΔCt method with the TUB2 gene as the internal control41.

Total protein was extracted using the Total Protein Extraction Kit (Roche Ltd., Basel, Switzerland). Standards 
were set up after balancing the sample concentration. ELISA was performed using a Lanosterol 14-Alpha 
Demethylase Kit (Multi Sciences Bio Co. Ltd., Hangzhou, China) following the manufacturer’s protocol. After the 
reaction was completed, the OD values of the solution at 450 nm and 570 nm were measured and the concentra-
tions of samples were calculated.

Statistical analysis.  Statistical analyses were performed using SPSS 17.0 (IBM Co. Ltd., NY, USA). The data 
are expressed as the means ± standard error of mean (SEM) and P < 0.05 was considered to be significant.

http://S4
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